Find the area of a triangle whose sides are $5 \mathrm{~cm}, 12 \mathrm{~cm}$ and $13 \mathrm{~cm}$.
in Mathematics
5 views
1 Vote
1 Vote
Find the area of a triangle whose sides are $5 \mathrm{~cm}, 12 \mathrm{~cm}$ and $13 \mathrm{~cm}$.

(a) $15 \mathrm{sq} . \mathrm{cm}$

(b) $30 \mathrm{sq} . \mathrm{cm}$

(c) $60 \mathrm{sq} \cdot \mathrm{cm}$

(d) $90 \mathrm{sq} \cdot \mathrm{cm}$
in Mathematics
by
7.2k Points

1 Answer

1 Vote
1 Vote
 
Best Answer

Solution

 Here, $a=5 \mathrm{~cm}, b=12 \mathrm{~cm}$

$c=13 \mathrm{~cm}$

$\therefore \quad s=\frac{5+12+13}{2}=\frac{30}{2}=15 \mathrm{~cm}$

$\therefore$ Area of the given triangle

$$

\begin{array}{l}

=\sqrt{s(s-a)(s-b)(s-c)} \\

=\sqrt{15(15-5)(15-12)(15-13)} \\

=\sqrt{15 \times 10 \times 3 \times 2} \\

=\sqrt{3 \times 5 \times 5 \times 2 \times 3 \times 2} \\

=3 \times 5 \times 2=30 \text { sq. cm; Ans. }

\end{array}

$$

So, the correct option is (B)

by
7.2k Points

Related Questions

Categories

2.1k Questions

1.8k Answers

0 Comments

17 Users