Find the area of a triangle whose sides are $5 \mathrm{~cm}, 12 \mathrm{~cm}$ and $13 \mathrm{~cm}$.
in Mathematics
18 views
1 Vote
1 Vote
Find the area of a triangle whose sides are $5 \mathrm{~cm}, 12 \mathrm{~cm}$ and $13 \mathrm{~cm}$.

(a) $15 \mathrm{sq} . \mathrm{cm}$

(b) $30 \mathrm{sq} . \mathrm{cm}$

(c) $60 \mathrm{sq} \cdot \mathrm{cm}$

(d) $90 \mathrm{sq} \cdot \mathrm{cm}$
in Mathematics
by
7.2k Points

1 Answer

1 Vote
1 Vote
 
Best Answer

Solution

 Here, $a=5 \mathrm{~cm}, b=12 \mathrm{~cm}$

$c=13 \mathrm{~cm}$

$\therefore \quad s=\frac{5+12+13}{2}=\frac{30}{2}=15 \mathrm{~cm}$

$\therefore$ Area of the given triangle

$$

\begin{array}{l}

=\sqrt{s(s-a)(s-b)(s-c)} \\

=\sqrt{15(15-5)(15-12)(15-13)} \\

=\sqrt{15 \times 10 \times 3 \times 2} \\

=\sqrt{3 \times 5 \times 5 \times 2 \times 3 \times 2} \\

=3 \times 5 \times 2=30 \text { sq. cm; Ans. }

\end{array}

$$

So, the correct option is (B)

by
7.2k Points

Related Questions

Welcome To Informesia

Informesia Helps You To Prepare India's All States Board Exams (CBSE, ICSE, UP Board, BSEB, HPBOSE, RBSE, MSBSHSE) and Competitive Exam Like JEE (Main + Advanced), AIIMS, NEET, KVPY, NTSE, BITSAT, Olympiad, CLAT...etc.
For Any Query or Suggestion, Please Contact us on :
[email protected]

Connect us on Social Media